Package: TrendTM 2.0.21

TrendTM: Trend of High-Dimensional Time Series Matrix Estimation

Matrix factorization for multivariate time series with both low rank and temporal structures. The procedure is the one proposed by Alquier, P. and Marie, N. "Matrix factorization for multivariate time series analysis." Electronic Journal of Statistics, 13(2), 4346-4366 (2019).

Authors:Emilie Lebarbier [aut, cre], Nicolas Marie [aut], Amélie Rosier [aut]

TrendTM_2.0.21.tar.gz
TrendTM_2.0.21.zip(r-4.5)TrendTM_2.0.21.zip(r-4.4)TrendTM_2.0.21.zip(r-4.3)
TrendTM_2.0.21.tgz(r-4.5-any)TrendTM_2.0.21.tgz(r-4.4-any)TrendTM_2.0.21.tgz(r-4.3-any)
TrendTM_2.0.21.tar.gz(r-4.5-noble)TrendTM_2.0.21.tar.gz(r-4.4-noble)
TrendTM_2.0.21.tgz(r-4.4-emscripten)TrendTM_2.0.21.tgz(r-4.3-emscripten)
TrendTM.pdf |TrendTM.html
TrendTM/json (API)

# Install 'TrendTM' in R:
install.packages('TrendTM', repos = c('https://emilielebarbier74.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 scripts 110 downloads 3 exports 50 dependencies

Last updated 4 days agofrom:1f7b96eb7c. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 28 2025
R-4.5-winOKMar 28 2025
R-4.5-macOKMar 28 2025
R-4.5-linuxOKMar 28 2025
R-4.4-winOKMar 28 2025
R-4.4-macOKMar 28 2025
R-4.4-linuxOKMar 28 2025
R-4.3-winOKMar 28 2025
R-4.3-macOKMar 28 2025

Exports:FM_ktOurSlopeTrendTM

Dependencies:ashbitopscapushecliclustercolorspacedeSolvefansifarverfdafdsFNNggplot2gluegtablehdrcdeisobandkernlabKernSmoothkslabelinglatticelifecyclelocfitmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRCurlrlangscalessoftImputetibbleutf8vctrsviridisLitewithr